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Joint Anchor-Feature Refinement for Real-Time
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Abstract—Object detection has been vigorously investigated for
years but fast accurate detection for real-world scenes remains a
very challenging problem. Overcoming drawbacks of single-stage
detectors, we take aim at precisely detecting objects for static
and temporal scenes in real time. Firstly, as a dual refinement
mechanism, a novel anchor-offset detection is designed, which
includes an anchor refinement, a feature location refinement, and
a deformable detection head. This new detection mode is able to
simultaneously perform two-step regression and capture accurate
object features. Based on the anchor-offset detection, a dual
refinement network (DRNet) is developed for high-performance
static detection, where a multi-deformable head is further de-
signed to leverage contextual information for describing objects.
As for temporal detection in videos, temporal refinement net-
works (TRNet) and temporal dual refinement networks (TDRNet)
are developed by propagating the refinement information across
time. We also propose a soft refinement strategy to temporally
match object motion with the previous refinement. Our proposed
methods are evaluated on PASCAL VOC, COCO, and ImageNet
VID datasets. Extensive comparisons on static and temporal
detection verify the superiority of DRNet, TRNet, and TDRNet.
Consequently, our developed approaches run in a fairly fast
speed, and in the meantime achieve a significantly enhanced
detection accuracy, i.e., 84.4% mAP on VOC 2007, 83.6% mAP
on VOC 2012, 69.4% mAP on VID 2017, and 42.4% AP on
COCO. Ultimately, producing encouraging results, our methods
are applied to online underwater object detection and grasping
with an autonomous system. Codes are publicly available at
https://github.com/SeanChenxy/TDRN.

Index Terms—Object detection, neural networks, computer
vision, deep learning.

I. INTRODUCTION

Object detection is one of the fundamental and challenging
areas of research in computer vision. With rapid advances
in deep learning, convolutional neural networks (CNN) have
demonstrated the state-of-the-art performance in this task.
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Fig. 1. Comparison of single-stage anchors and RPN outputs. For better
visualization, only several key boxes are demonstrated. (a) Multi-scale SSD
anchors. (b) RPN outputs in Faster RCNN.

Zhao et al. presented an overview of modern object detection
approaches [1]. From this review, we can see that two-stage
detectors represented by RCNN family [2] and RFCN [3]
usually attain an accurate yet slightly slow performance. On
the contrary, by detecting objects in a one-step fashion, single-
stage detectors [4], [5] are able to run in real time with
reasonably modest accuracy. Therefore, fast accurate detection
remains a challenging problem for real-world applications.

It is instructive that the two-stage method induces high
accuracy, while the single-stage detector has a desirable in-
ference speed. This inspires us to investigate the reasons. In
our opinion, the high accuracy of two-stage approaches comes
with two advantages: i) two-step regression and ii) relatively
accurate features for detection. In detail, two-stage detectors
firstly regress pre-defined anchors with the aid of region pro-
posal [2], and this operation significantly eases the difficulty
of final localization. Besides, an RoI-wise subnetwork [2] is
appended to the region proposal part, so features in region of
interest can be leveraged for final detection. By contrast, there
are two drawbacks in the single-stage paradigm: i) Detection
head directly regresses coordinates from pre-defined anchors,
but most anchors are far from matching object regions. ii)
Classification information comes from probably inaccurate
locations, where features could not be precise enough to
describe objects. Referring to Fig. 1(a), it is relatively difficult
to regress pre-defined anchors to precisely surround the object
(e.g., the dog in Fig. 1). Moreover, as feature sampling
locations follow pre-defined anchor regions, detection features
for small-scale anchors cannot cover the entire object region,
while that for large-scale anchors weaken the object because
of background. On the contrary, owing to region proposal, the
two-stage methods detect the dog using a better initialization
(see Fig. 1(b)). Thus, the strengths of two-stage methods
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exactly reflect the single-stage drawbacks that lead to relatively
lower detection accuracy. Although Zhang et al. developed
RefineDet [6] to introduce two-step regression to the single-
stage detector, it still failed to capture accurate detection
features. That is, pre-defined feature sampling locations are
not precise enough for describing refined anchor regions. (Note
that detailed comparison between RefineDet and our approach
will be presented in Section III-B.) Thus, there is an imperative
need of further overcoming these single-stage limitations for
real-time accurate object detection.

In addition, most researches have largely focused on detect-
ing object statically, ignoring temporal coherence in real-world
applications. Detection in real-world scenes was introduced
by ImageNet video detection (VID) dataset [18]. To the best
of our knowledge, main ideas of temporal detection include
i) post-processing [7], ii) tracking-based location [8], [9],
iii) feature aggregation with motion information [8], [10]–
[13], iv) RNN-based feature propagation [12], [14]–[16], and
v) batch-frame processing (i.e., tubelets proposal) [17]. All
these ideas are attractive in that they are able to leverage
temporal information for detection, but they also have respec-
tive limitations. In brief, methods i)–iv) borrow other tools
(e.g., tracker, optical flow, LSTM, etc.) for temporal analysis.
Methods iii) and iv) focus on constructing superior temporal
features. Nevertheless, they detect objects following the static
mode. Method v) works in a non-causal offline mode that
prohibits this approach from real-world tasks. Furthermore,
most recent works pay excessive attention to accuracy so that
high computational costs could affect time efficiency. Thus, a
novel temporal detection mode should be developed for videos.

Overcoming aforementioned single-stage drawbacks, a dual
refinement mechanism is proposed in this paper for static and
temporal visual detection, namely anchor-offset detection. This
joint anchor-feature refinement includes an anchor refinement,
a feature location refinement, and a deformable detection head.
The anchor refinement is developed for two-step regression,
while the feature location refinement is proposed to capture
accurate single-stage features. Besides, a deformable detection
head is designed to leverage this dual refinement information.
Based on the anchor-offset detection, we propose three ap-
proaches for object detection in images and videos. Firstly,
a dual refinement network (DRNet) is proposed. DRNet is
designed for static detection, where a multi-deformable head
is developed for diversifying detection receptive fields for
more contextual information. Secondly, temporal refinement
networks (TRNet) are designed, which perform anchor refine-
ment across time for video detection. Thirdly, temporal dual
refinement networks (TDRNet) are developed that extend the
anchor-offset detection towards temporal tasks. Additionally,
for temporal detection task, we propose a soft refinement
strategy to match object motion with previous refinement
information. Our proposed DRNet, TRNet, and TDRNet are
validated on PASCAL VOC [19], COCO [20], and ImageNet
VID [18] datasets. As a result, our methods achieve a real-time
inference speed and considerably improved detection accuracy.
Furthermore, these approaches have been applied to object-
driven navigation and grasping in an unstructured undersea
environment. Contributions are summarized as follows:

• Starting with drawbacks of single-stage detectors, an
anchor-offset detection is proposed to perform two-step
regression and capture accurate object features. The
anchor-offset detection includes an anchor refinement,
a feature-offset refinement, and a deformable detection
head. Academically, without region-level processing, this
joint anchor-feature refinement achieves single-stage re-
gion proposal. Thus, the anchor-offset detection bridges
single-stage and two-stage detection so that it is able to
induce a new detection mode.

• A DRNet based on the anchor-offset detection and a
multi-deformable head is developed to elevate static de-
tection accuracy while maintaining real-time inference
speed for image detection task.

• As a new temporal detection mode for video detection
task, a TRNet and a TDRNet are proposed based on
the anchor-offset detection without the aid of any other
temporal modules. They are characterized by a better
accuracy vs. speed trade-off and have a concise training
process without the requirement of sequential data. In
addition, a soft refinement strategy is designed to enhance
the effectiveness of refinement information across time.

• The single-stage DRNet maintains fast speed while ac-
quiring significant improvements in accuracy, i.e., 84.4%
mean average precision (mAP) on VOC 2007 test set,
83.6% mAP on VOC 2012 test set, and 42.4% AP
on COCO test-dev. Based on VID 2017 validation set,
DRNet sees 69.4% mAP; TRNet achieves 66.5% mAP;
and TDRNet obtains 67.3% mAP.

The remainder of this paper is organized as follows. Sec-
tion II presents the related works. Including anchor-offset
detection and multi-deformable head, DRNet is elaborated
in Section III. Section IV presents TRNet and TDRNet in
detail, and Section V provides the experimental results and
discussion. Conclusions are summarized in Section VI.

II. RELATED WORK

A. CNN-Based Static Object Detection

Deep learning methods have recently dominated the field
of object detection [1]. Two-stage detectors [2], [3], [21],
[22] usually detect objects by region proposal, location, and
classification. For example, inspired by Faster RCNN [2] and
RFCN [3], CoupleNet [21] leveraged both region-level and
part-level features to express a variety of challenging object
situations, which achieved considerable detection accuracy but
it only ran at 8.2 FPS. As groundbreaking works, YOLO [4]
and SSD [5] localized and classified objects using a single-
shot network for real-time detection. Recently, many revised
single-stage versions have emerged [6], [24]–[29]. Typically,
in favor of small object detection, Lin et al. developed a
RetinaNet to formulate the single-shot network as an FPN
[23] fashion for propagating information in a top-down manner
to enlarge shallow layers’ receptive field [24]. Redmon and
Farhadi proposed YOLOv3 with DarkNet53 and multi-scale
anchor for fast accurate detection [29]. Zhang et al. designed
a RefineDet to introduce two-step regression to single-stage
pipeline [6]. RefineDet adjusted pre-defined anchors for more
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Fig. 2. The schematic layout of the proposed DRNet. Refined anchors are produced by coarse regression with ARM features, and they are first employed
to predict feature offsets, namely, feature location refinement. The detection head utilizes ODM feature maps, refined anchors, and refined feature sampling
locations to detect objects, i.e., anchor-offset detection. A multi-deformable head is designed for rich contextual information. (a) Overall framework. Each
anchor refinement induces a feature location refinement. (b) Design details. Convolution is detailed with kernel size, stride, and output channel size. Only one
detection path with 3× 3 convolutional kernel is shown.

precise localization. However, its detection features were still
fixed on pre-defined positions, failing to precisely describe
refined anchor regions. In short, although single-stage methods
has a superiority in speed, two-stage methods still dominate
detection accuracy on generic benchmarks [18]–[20]. Hence,
we are motivated to analyze single-stage drawbacks from two-
stage merits (analyzed in Section I), and construct DRNet with
both competitive accuracy and fast speed.

B. Temporal Object Detection

To detect objects in temporal vision, some post-processing
methods have been first investigated to merge multi-frame
results, then tracker-based detection, motion-guided feature ag-
gregation, RNN-based feature integration, and tubelet proposal
are studied by the research community. Han et al. proposed an
SeqNMS to discarded temporally interrupted bounding boxes
in the non-maximum suppression (NMS) phrase [7]; Feicht-
enhofer et al. combined RFCN and a correlation-filter-based
tracker to boost recall rate [9]. Based on motion estimation
with optical flow, Zhu et al. devised a temporally-adaptive
key frame scheduling to effective feature aggregation [11];
Chen et al. and Liu et al. took advantage of Long Short-
Term Memory to propagate CNN features across time [15],
[16]. However, the temporal analysis capacity in the above-
mentioned methods is obtained from other temporal tools.
Although some methods focused on how to construct superior
temporal features, they still remained inapposite static detec-
tion mode. As a typical offline detection mode, Kang et al.
reported a TPN for tubelet proposal (i.e., temporally propa-
gated boxes) so that multiple frames could be simultaneously
processed to improve temporal consistency [17]. However,
this batch-frame mode struggled to be qualified for real-world

tasks. On the contrary, without the aid of any other temporal
tools, we novelly develop a real-time online detection mode for
videos using the idea of refinement. That is, refined anchors
and refined feature sampling locations are generated with key
frames, which would be temporally propagated for detection.
Compared to most video detectors, our methods have a concise
training process without the need for sequential images.

C. Sampling for Detection

It is widely accepted that spatial sampling is important to
construct robust features. For example, Peng et al. detected ob-
jects by an improved multi-stage particle window that can sam-
ple a small number of key features for detection [34]. In terms
of CNN, canonical convolution is based on a square kernel
that is not suited enough to variform objects. For augmenting
the spatial sampling locations, Dai et al. proposed deformable
convolutional networks to combat fixed geometric structures in
traditional convolution operation. The deformable convolution
significantly boosted the detection accuracy of RFCN [35].
As for video detection, Bertasius et al. used the deformable
convolutions across time and constructed robust features for
temporally describing objects [13]. Zhang et al. designed a
feature consistency module with deformable convolution to
reduce inconsistency in the single-stage pipeline [36]. Wang
et al. proposed guided anchoring for RPN, Faster RCNN,
and RetinaNet to achieve higher-quality region proposal [37].
Creatively, we tend to capture accurate single-stage features,
and more specifically, refined feature locations are produced
based on refined anchors. Moreover, we propagate refinement
information across time for video detection.
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III. DUAL REFINEMENT NETWORK

In this section, the proposed DRNet will be presented. The
network architecture is first briefed, then, we will demonstrate
how to overcome two key single-stage drawbacks with anchor-
offset detection. Next, our designed multi-deformable head is
delineated, followed by the training and inference.

A. Overall Architecture

1) Basic Structure: As shown in Fig. 2, our proposed
architecture is a single-shot network with a forward backbone
for feature extraction. The network generates a fixed number
of bounding boxes and corresponding classification scores, fol-
lowed by the NMS for duplicate removal. Inheriting from Re-
fineDet [6], there is an anchor refinement module (ARM) and
an object detection module (ODM) for two-step regression.
ARM regresses coordinates for refined anchors, then feature
offsets are predicted using anchor offsets. In ODM, a creative
detection head is designed with deformable convolution for
final classification and regression, whose inputs are ODM
features, refined anchors, and feature offsets. Furthermore, a
multi-deformable head is developed with multiple detection
paths to leverage contextual information for detection.

B. Anchor-Offset Detection

1) From SSD to RefineDet, then to DRNet: As illustrated
in Fig. 3(a), SSD directly detects objects with ARM features,
whereas RefineDet adopts FPN for strong semantic informa-
tion. Moreover, RefineDet develops an anchor refinement for
more precision localization and a negative anchor filtering
for addressing extreme class imbalance problem. In our DR-
Net, we inherit anchor refinement but discard the negative
anchor filtering since training with hard negative mining [5]
induces a similar effect. More specifically, a feature location
refinement and a deformable detection head are proposed to
combat another key drawback in the single-stage paradigm,
i.e., inaccurate feature sampling locations.

In general, detection in traditional SSD-like manner is
based on hand-crafted anchors which are rigid and usually
inaccurate. Pre-defined anchors and fixed feature locations
could not be suited enough to regress and classify objects (see
the left top in Fig. 3(b)). Through preliminary localization,
refined anchors in RefineDet are in favor of more precise
coordinate prediction. However, RefineDet still uses inaccurate
feature sampling locations (see the right top in Fig. 3(b)) for
regression and classification. That is, the anchor refinement
would incur serious anchor-feature misalignment. Thus, it
is defective that the anchor refinement is leveraged alone.
Overcoming these difficulties, our designed anchor-offset de-
tection is able to achieve two-step regression and capture more
accurate detection features in a single-stage pipeline (see the
left bottom in Fig. 3(b)). This joint anchor-feature refinement
manner is more reasonable than RefineDet.

2) Anchor Refinement: This process is analogous to Re-
fineDet, i.e., ARM generates refined anchors that provide
better initialization for the second-step regression. A location
head performs convolution to generate anchor offset ar using
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Fig. 3. Comparison of three single-stage detectors. (a) Structure sketch of
SSD (left, top), RefineDet (right, top), and DRNet (bottom). (b) Detection
modes of SSD (left, top), RefineDet (right, top), and DRNet (left, bottom).
(b) shows the main idea of the anchor-offset detection.

backbone-based ARM features fARM . That is, ar = War ∗
fARM , where ∗ denotes convolution (W is the learnable con-
volutional weight). Note that ar is the coordinate offset from
original anchors. Anchor refinement is urgently necessary. On
one hand, it highly relieves the difficulty of localization. On
the other hand, it can guide feature location refinement.

3) Deformable Detection Head: According to deformable
convolution [35], a deformable detection head is designed to
leverage the refinement information. The standard detection
head in SSD uses a regular 3 × 3 grid R to predict category
probability and coordinates for a feature map cell. In the mean-
time, through careful anchor design, the respective field of R
can describe a specific anchor region. Thus, the prediction
can be given as Pp0 =

∑
p∈R w(p) · fODM (p), where P is

the prediction of category probability or coordinate offset; w
is the convolution weight; p represents positions in R while
p0 is the center; fODM denotes ODM features.

However, the respective field of R usually fails to describe
the refined anchor region (see the right top of Fig. 3(b)).
Thereby, allowing R to deform to fit various anchor changes,
the deformable detection head is developed to capture accurate
features with the feature offset δp,

Pp0 =
∑
p∈R

w(p) · fODM (p+ δp). (1)
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4) Feature Location Refinement: The offset set ∆p = {δp}
is computed with the input feature in original deform pipeline,

∆p = Wfr ∗ fODM , (2)

where Wfr is the convolutional weight. Nevertheless, there is
a strong demand for describing the refined anchor regions with
the deformed grids. Therefore, our feature offsets are predicted
based on anchor offsets, i.e., feature location refinement,

∆p = Wfr ∗ ar. (3)

In detail, this operation is a convolution with 1× 1 kernels.
Since each spatial element in ar is coordinate offsets for
refined anchors, its channel information is fused for feature
location refinement. Note that anchor offsets and feature
offsets are different in tensor shape. A man-made function
can be designed to map anchor offsets to feature offsets,
but we adopt a learnable mapping. Although the man-made
manner can also promote refined feature locations to describe
refined anchors, it still generates a conventional regular feature
sampling region. Thus, the feature location refinement adopts
a learnable manner to produce flexible feature sampling loca-
tions from multiple anchor offsets.

In this way, the refined feature locations can describe refined
anchor regions more effectively. We call this detection mode
anchor-offset detection, which can be formulated as

Plocal = (Wlocal ∗ (fODM ,∆p))⊕ (ar ⊕ ao)
Pconf = Wconf ∗ (fODM ,∆p).

(4)

where ⊕, ao represent anchor decoding operation [5] and the
original anchor, respectively; W ∗ (f,∆p) denotes deformable
convolution with W as the weight. As ar is the coordinate
offset from ao, ar ⊕ ao is the refined anchor. The operation
of two ⊕ is two-step regression that elevates the precision of
localization, while ∆p is the feature offset that constructs the
accurate single-stage detection features.

C. Multi-Deformable Head

CoupleNet developed local and global FCN to detect ob-
jects [21]. The local FCN focused local features in a region
proposal while the global one paid attention to the whole
region-level features. In this way, more semantic information
and underlying object relation are exploited for high-quality
detection. Thus, taking aim at describing the object using
original, shrunken, and expansile region-level features, a multi-
deformable head is developed for the single-stage detector. The
shrunken region-level features are in favor of leveraging local
messages while the expansile region-level features contain
more contextual information and object relation.

In this way, multiple detection head is designed with dif-
ferent respective field sizes, inducing multiple detection paths.
As shown in Fig. 4, each of detection path is an anchor-offset
detection, and their feature location refinement is independent.
Besides, their results are fused with element-wise summation.
The detection based on L deformable paths can be given as

Plocal = (
∑L
l=1Wlocall ∗ (fODM ,∆pl))⊕ (ar ⊕ ao)

Pconf =
∑L
l=1Wconfl ∗ (fODM ,∆pl).

(5)
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D. Training and Inference

As for pre-defined anchor setting, each feature layer is
associated with one specific scale of anchors, i.e., the anchor
size of [32, 64, 128, 256] is adopted for 4-scale feature maps
from low-level to high-level, and 3 anchors are tiled at each
feature map cell with aspect ratios of [1.0, 2.0, 0.5]. In terms
of optimization, an SGD optimizer with 0.9 momentum and
0.0005 weight decay is employed to train the whole network.
Because of different sizes of datasets, the learning rate sched-
ule is diverse for each dataset, which will be briefed latter.

A multi-task objective is designed to train DRNet in-
cluding two localization losses Lloc−ARM ,Lloc−ODM and
a confidence loss Lconf , i.e., L = 1

NARM
Lloc−ARM +

1
NODM

(Lloc−ODM + Lconf ), where N is the num-
ber of positive boxes in ARM and ODM. Lloc =∑N
i=1 sommothL1(pi − g∗i ), where g∗i is the ground truth

coordinates of the i-th positive anchor. Before computation of
Lloc, anchors should be determined to be positive or negative
based on jaccard overlap [5]. We handle original anchors and
refined anchors for Lloc−ARM and Lloc−ODM , respectively,
by the following processes. Firstly, each ground truth box
is matched to anchors with the best jaccard overlap, then
anchors with > 0.5 overlap will be matched to corresponding
ground truth box. Let cclsi be the probability that the i-th
predicted box belongs to class cls (cls = 0 for background).
Lconf = −

∑N
i=1 log(cclsi ) −

∑δN
i=1 log(c0k), where δN neg-

ative anchors are selected by hard negative mining [5]. This
operation selects a part of negative boxes with top loss values
for training to address the problem with extreme foreground-
background class imbalance, and δ = 3.

In inference phase, DRNet predicts confident object can-
didates (confident scores > 0.01) in the manner of anchor-
offset detection and multi-deformable head. Subsequently,
these candidates are processed by NMS with 0.45 jaccard
overlap pre class and retain top 200 (for COCO) or 300 (for
VOC and VID) high confident objects as the final detections.

IV. TEMPORAL DUAL REFINEMENT NETWORKS

In this section, we present how to propagate refined anchors
and refined feature sampling locations across time. Next,
TRNet and TDRNet are formed. Then, we also describe the
proposed soft refinement strategy.
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Fig. 5. Designs of the proposed TDRNet. (a) Network structure for RG and
RD. RG generates refinement information while RD performs final detection.
RG’s outputs (i.e., anchor offsets and feature location offsets) serve as RD’s
inputs. (b) The training phase. (c) The testing phase.

A. Architecture

As shown in Fig. 5(a), a reference generator (RG) and a
refinement detector (RD) are designed in this section, both
of which are constructed with similar structure, i.e., canonical
SSD framework [5] with 4-scale detection features. However,
RG and RD have different training mode, parameters, and
outputs. Like ARM in DRNet, RG predicts refinement infor-
mation including refined anchors or both refine anchors and
feature offsets. Similar to ODM in DRNet, RD takes over
RG’s outputs as references, and detect objects frame by frame.
If RG only predicts refined anchors, the framework is called
TRNet. When feature offsets are also predicted by RG, the
anchor-offset detection with a deformable detection head is
also employed by RD, and we call this structure TDRNet.
That is, compared to TDRNet (see Fig. 5(a)), TRNet does
not contain the module of feature location refinement, and its
detection head is composed of traditional convolutions.

B. Training

In general, temporal detectors usually have a complex
training process with sequential images. For example, TSSD

2n
d 
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Fig. 6. Soft refinement strategy. To match object motion with the previous
refinement, a soft coefficient e is introduced. Computed with the 1st frame,
key refined anchors are demonstrated in the 2nd, 4th, and 8th frames. The
decrease of e reduces refinement intensity, producing loosely scattered refined
anchors. That is, it is seen that refined anchors based on e = 1 are compact.
In contrast, refined anchors based on e = 0.75 are more loosely scattered
than that based on e = 1, while refined anchors based on e = 0.5 are more
loosely scattered than that based on e = 0.75.

developed a multi-step training strategy [16], and the initial-
ization for multi-frame regression layer in TPN is complicated
[17]. Conversely, the training process for TRNet and TDRNet
is refreshingly concise, and we also eliminate the need of
sequential training images. As shown in Fig. 5(b), during the
training process, RG and RD play similar roles to DRNet’s
ARM and ODM, respectively. Thereby, both RG and RD can
be trained with static images following DRNet’s basic training
settings and loss functions.

C. Inference

Consider a video as an image sequence, i.e., V =
{I0, I1, ..., IM}. TRNet and TDRNet attempt to obtain frame-
level detections {D0, D1, ..., DM}, where Dm contains the
boxes and class predictions of Im. RG takes over Im and
outputs anchor offset ar and feature offset ∆p,

arm,∆pm = RG(Im). (6)

Then, RD detects objects with Im, ar, and ∆p,

Dm = RD(Im, ar,∆p)

=

{
(Wlocal ∗ (fIm ,∆p))⊕ (ar ⊕ ao)
Wconf ∗ (fIm ,∆p),

(7)

where fIm is the feature extracted from Im.
Despite the similar detection manner, it is apparent that

RD is more computationally efficient than DRNet. Therefore,
considering the temporal context in temporal vision, a key
frame duration is used for RG to pursue a better trade-
off between accuracy and speed. That is, only key frames
will be processed by RG, while non-key frames are detected
by RD with previous RG’s outputs. Mathematically, in (7),
ar = arm,∆p = ∆pm for key frames, whereas ar,∆p are
from the previous key frame when detecting non-key frames.
In this manner, ar and ∆p are propagated as the temporal
information. As illustrated in Fig. 5(c), using the first frame
in a period, RG generates refinement references that will
survive k time stamps. Then, RD detects objects based on these
references in the whole period. It is apparent that frequent
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Fig. 7. Visualization of refined feature sampling locations for Conv5 3. For better visualization, only the sampling centers (i.e., the center dot in left-bottom
Fig 3(b)) are demonstrated. The original sampling centers are illustrated with green dots, which are regularly tiled on images. The red dots show the refined
sampling centers that have a stronger capability of describing objects. These images are from VOC, COCO and ImageNet VID.

reference update would lead to higher detection accuracy and
more computational costs, so the trade-off between accuracy
and speed can be adjusted by different k setting.

Taking aim at adapting to various object motion, a soft
refinement strategy is proposed with a soft coefficient e.
In SSD, the intent of designing anchor is to use numerous
boxes to cover the whole image as the prior knowledge, but
significantly discarding anchor diversity, the refined anchors
tend to surround foreground. Refined anchors are in favor of
static detection, but objects in videos have a variety of motion
properties or pose changes. Hence, the soft refinement strategy
is designed to retain the anchor diversity for relatively long
temporal detection period. The soft refinement can be given
as ars = ar× e, where ars is the soft anchor offset, and as a
scalar, e ∈ [0, 1] multiplies each element in a tensor. Because
ar is the offset from original anchors, ar × e can relax the
intensity of anchor refinement by reducing offset magnitude so
that refined anchors can be loosely scattered around objects.
Referring to Fig. 6, refined anchors are computed by the
first frame in the period, then some key refined anchors are
visualized in the 2nd, 4th, and 8th frames. Without the soft
refinement strategy, they gradually fail to be precisely aware of
objects across time. For example, when e = 1, refined anchors
cannot surround the head of a sheep in the 8th frame. This
phenomenon causes regression difficulties for RD, prohibiting
k from increasing. That is, e = 1 incurs that the refinement
information can hardly be propagated in a relatively long
range of time series. When e = 0.75 or 0.5, this drawback
is mitigated so that the detection period can be longer for a
better trade-off between accuracy and speed.

V. EXPERIMENTS AND DISCUSSION

Our methods are implemented under the Pytorch frame-
work. The training and experiments are carried out on a
workstation with an Intel 2.20 GHz Xeon(R) E5-2630 CPU,
NVIDIA TITAN-1080 GPUs, CUDA 8.0, and cuDNN v7. Our
approaches are trained and evaluated on PASCAL VOC [19],
COCO [20], and ImageNet VID [18] datasets. Furthermore,
we applied TDRNet to online underwater object detection.

TABLE I
Ablation Studies of DRNet320 on VOC 2007. THE BASELINE IS 79.1%

Component DRNet320-VGG16
multi-deformable head? X X

feature location refinement? X X X X
deformable detection head? X X X X X

BN for VGG&extra? X X X
mAP(%) 78.3 79.8 80.5 81.1 81.7 82.0

TABLE II
Effectiveness of various multi-deformable head designs. A VARIETY OF
DETECTION PATHS WITH DIFFERENT CONVOLUTIONAL KERNEL SIZE (ks)
AND DILATION (di) ARE USED TO VALIDATE THE EFFICACY OUR DESIGNS.

ks = 5× 5, di = 1? X X
ks = 3× 3, di = 2? X
ks = 1× 1, di = 1? X X X
ks = 3× 3, di = 1? X X X X X

mAP(%) 79.8 79.8 79.4 80.5 80.3

A. Ablation Studies of DRNet320-VGG16 on VOC 2007

Experiments on PASCAL VOC 2007 are first conducted
with VGG16 [38] as the backbone to study the proposed
dual refinement mechanism in detail. In this section, the
models are trained on the union set of VOC 2007 trainval
and VOC 2012 trainval (16, 551 images, denoted as “07+12”),
and evaluated on VOC 2007 test set (4, 952 images). We use
mAP to describe the detection accuracy. For the convenience
of comparison, RefineDet without negative anchor filtering is
employed as the baseline, whose mAP is 79.1% in our re-
produced Pytorch implementation (Note that it is 79.5% in
original Caffe implementation). The changes of mAP caused
by various model designs are shown in Table I.

1) Anchor-Offset Detection: The anchor-offset detection
contains an anchor refinement, a feature location refinement,
and a deformable detection head, the first of which has been
studied by [6], so we focus on the latter two components. At
first, the deformable detection head without feature location
refinement is tested. Following [35], the offsets are computed
with ODM features (referring to (2)). As a result, this change
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TABLE III
Results on Pascal VOC 2007 and 2012 test dataset. “TRAIN DATA” IS USED FOR VOC 2007 TRAINING, AND THAT OF VOC 2012 CONTAINS AN EXTRA

VOC 2007 TEST SET. “S” DENOTES INSTANCE SEGMENTATION LABELS. “+” INDICATES MULTI-SCALE TESTING. BOLD FONTS INDICATE THE BEST.

Method Backbone Train data Input size #Boxes FPS mAP
VOC 2007 VOC 2012

two-stage
Faster RCNN [2] VGG16 07+12 1000× 600 300 7 73.2 70.4
Faster RCNN [2] ResNet101 07+12 1000× 600 300 2.4 76.4 73.8

RFCN [3] ResNet101 07+12 1000× 600 300 9 80.5 77.6
CoupleNet [21] ResNet101 07+12 1000× 600 300 8.2 82.7 80.4

Attention CoupleNet [22] ResNet101 07+12+S 1000× 600 300 6.9 83.1 81.0

single-stage
YOLO [4] GoogleNet [39] 07+12 448× 448 98 45.0 63.4 57.9

SSD321 [25] ResNet101 07+12 321× 321 17080 11.2 77.1 75.4
SSD300 [5] VGG16 07+12 300× 300 8732 120.0∗ 77.2 75.8

DSOD300 [28] DenseNet [40] 07+12 300× 300 8732 17.4 77.7 76.3
YOLOv2 [26] Darknet19 07+12 544× 544 1445 40.0 78.6 73.4
DSSD321 [25] ResNet101 07+12 321× 321 17080 9.5 78.6 76.3

SSD512 [5] VGG16 07+12 512× 512 24564 34.7∗ 79.8 78.5
RefineDet320 [6] VGG16 07+12 320× 320 6375 60.0∗ 80.0 78.1
RFBNet300 [27] VGG16 07+12 300× 300 8808 83.0∗ 80.5 -

SSD513 [25] ResNet101 07+12 513× 513 43688 6.8 80.6 79.4
DSSD513 [25] ResNet101 07+12 513× 513 43688 5.5 81.5 80.0

RefineDet512 [6] VGG16 07+12 512× 512 16320 24.1 81.8 80.1
RFBNet512 [27] VGG16 07+12 512× 512 24692 38.0∗ 82.2 -

DRNet320 VGG16 07+12 320× 320 6375 55.2∗ 82.0 79.3†

DRNet512 VGG16 07+12 512× 512 16320 32.2∗ 82.8 80.6†

DRNet320+ VGG16 07+12 320× 320 6375 − 83.9 83.1†

DRNet512+ VGG16 07+12 512× 512 16320 − 84.4 83.6†

†: in VOC 2012 test server: http://host.robots.ox.ac.uk:8080/anonymous/18COCB.html, http://host.robots.ox.ac.uk:8080/anonymous/V1DWET.html,
http://host.robots.ox.ac.uk:8080/anonymous/KCHPYZ.html, http://host.robots.ox.ac.uk:8080/anonymous/SZHWN4.html. *: Pytorch speed.

leads to a 0.8% mAP drop. In our opinion, this should be
attributed to improper offsets. That is, the refined anchors are
computed with ARM while the feature offsets are from ODM,
so they are independent, making refined feature locations still
fail to describe refined anchor regions.

The refined anchors have been displayed in Fig. 6, so the
refined feature sampling locations are also demonstrated in
Fig. 7 to better explain the advantages of the proposed anchor-
offset detection. For better visualization, only the sampling
centers (i.e., the center dot in left-bottom Fig. 3(b)) are
demonstrated. Referring to green dots in Fig. 7, the pre-defined
detection features are regularly fixed on feature maps (their
locations are mapped to the original images for visualization).
This design is justified for the traditional SSD since anchors
are also tiled in the same manner. However, the refined anchors
tend to surround objects for more precision localization (see
Fig. 6), so it is reasonable that the feature locations should
have the same tendency. As shown with red dots, gathering
towards objects, the refined feature locations are more suitable
for regression and classification. Moreover, in some areas away
from objects, the refined feature locations would not blindly
shift towards targets so that the detection capability for the
whole image can be maintained.

Therefore, the operation of the proposed feature location
refinement is crucial to capture accurate detection features.
Following the pipeline of anchor-offset detection, the refined
feature locations are tightly associated with refined anchors.
Thus, a 0.7% mAP rise (i.e., 79.8% vs. 79.1%) is induced.

2) Multi-Deformable Head: For leveraging more contextual
information for detection, multiple detection paths are devised
with various respective field sizes, or convolution kernel size
and dilation. The effectiveness of various multi-deformable
designs is shown in Table II. At first, the 1 × 1 grid is
employed to utilize shrunken region-level features, but it incurs
negligible effectiveness. The 1 × 1 grid should have focused
on most suitable local parts for detection, but feature offsets
are computed with anchor offsets in our pipeline, ignoring
suitable local parts. Then, the 3 × 3 grid with dilation is
devised as one of the detection paths, but it leads to a 0.4%
drop in mAP. Although it expands the respective field, the
dilated 3× 3 grid splits features and fails to describe objects
effectively. Covering this shortage, the 5 × 5 grid without
dilation works more effectively, and it invites a 0.7% mAP rise
(i.e., 80.5% vs. 79.8%) since more contextual information is
involved. Moreover, the 1× 1 detection path is removed, and
this more efficient design still can reach 80.3% in mAP. These
comparisons also indicate that the improvement comes from
above-analyzed reasons rather than increasing parameter size.

3) Towards More Effective Training: Batch normalization
[41] is introduced to the backbone for more effective training,
and a significant improvement in accuracy is incurred, i.e.,
81.1% mAP. Then, the anchor-offset detection and multi-
deformable head further boost the performance. Referring to
Table I, removing the multi-deformable head leads to a 0.3%
drop in mAP, and removing the anchor-offset detection invites
another 0.6% mAP drop. Thus, our designs are still efficient,
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making a superior detection performance with such a small
input image, i.e., 82.0% mAP and 320× 320 input size.

B. Results on VOC 2007

We use the initial learning rate of 0.001 for the first 130
training epochs, then use the learning rate of 0.0001 for the
next 40 epochs and 0.00001 for another 40 epochs. Referring
to Table III, our DRNet320 achieves 82.0% mAP surpassing
all methods with such small inputs by a large margin. When
compared to SSD300, our method outperforms it by 4.8 points
(i.e., 82.0% vs. 77.2%), and DRNet320 further improves
mAP by 2.0% as for RefineDet320 (i.e., 82.0% vs. 80.0%).
Compared to RFBNet300, our DRNet320 also has 1.5-point
higher mAP (i.e., 82.0% vs. 80.5%).

For 512 × 512 input size, DRNet512 obtains 82.8% mAP
that is also competitive with all compared methods. Only
Attention CoupleNet [22] has slightly higher mAP than ours
(i.e., 82.8% vs. 83.1%). However, Attention CoupleNet uses
ResNet101 [42] as its backbone, and its results come with larg-
er input size (i.e., 1000× 600). Besides, Attention CoupleNet
introduces extra segmentation annotations to its multi-scale
training processing. In addition, DRNet512’s inference speed
surpasses that of Attention CoupleNet by a large margin (i.e.,
32.2 vs. 6.9 FPS). Therefore, the proposed DRNet achieves
a better trade-off between accuracy and speed. To relieve the
impact of relatively small input size, we leverage multi-scale
strategy for testing, and DRNet320 and DRNet512 can obtain
83.9%, 84.4% mAP, respectively.

C. Results on VOC 2012

More challenging VOC 2012 dataset is employed to evaluate
our proposed designs, and we use the union set of VOC
2007 and VOC 2012 trainval sets plus VOC 2007 test set
(21, 503 images) for training in this experiment, and test
models on VOC 2012 test set (10, 991 images). The learning
rate schedule is consistent with VOC 2007 training. Referring
to Table III, our DRNet320 obtains 79.3% mAP that outmatch
all compared methods with similar small input sizes. With
512×512 input size, DRNet512 improves the mAP to 80.6%,
which validates the effectiveness of our designs once again.
Additionally, with multi-scale testing, 83.1% and 83.6% mAP
are induced by DRNet320 and DRNet512.

D. Results on COCO

We perform a thorough analysis on COCO detection dataset,
which contains 80 class labels. As in previous work, we also
use the union of training images and a subset of validation
images (118, 278 images, denoted as “trainval35k”) for train-
ing, and test models on test-dev set (20, 288 images). The
whole network is trained for 70 epochs with a learning rate
of 0.001, then for 30 epochs with a learning rate of 0.0001
and another 30 epochs with a learning rate of 0.00001. The
main COCO metric denotes as AP, which evaluates detection
results at IoU∈ [0.5 : 0.05 : 0.95]. AP@0.5, AP@0.75, APS ,
APM , and APL are also used for deep comparison.
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Fig. 8. Error analysis of DRNet512 on person, vehicle, furniture, and
electronic classes in the COCO 2014 minival set. Each sub-figure shows the
cumulative fraction of detections that are correct (Cor) or false positive due to
poor localization (Loc), confusion with similar categories (Sim), with others
(Oth), or with background (BG).

As shown in Table IV, some anchor-free methods recently
achieve high AP on COCO, which leverage key-point tech-
nology [30]–[32] or full convolution [33] for object detection.
DRNet320 achieves the results of 30.5%, which is better than
contemporary methods (e.g., RefineDet320, RFBNet300), so
our approach can effectively cope with a variety of complex
situations with small input resolution. Furthermore, DRNet512
obtains a more competitive AP of 34.3%. Because they have
similar AP results, we draw readers’ attention to a deep
comparison among methods in boldface. (Note that YOLOv3
is not written in bold because its input size is 608.) At
first, DRNet512 has huge improvements as opposed to Re-
fineDet512 on all criteria, where our designs are proved to be
successful. Moreover, our DRNet512 has the best VOC-like
AP@0.5 (i.e., 57.1%) and APS (i.e., 17.6%), so our method
is more adept at small object detection owing to the proposed
dual refinement mechanism. However, our results on AP@0.75
and APL are not comparable with that of some methods. This
is caused by two reasons: i) two-stage methods use larger input
size; ii) ResNet101 or RFB block [27] provides larger effective
receptive field for describing large objects [43]. Therefore, our
methods are also tested with ResNet101 as the backbone. As a
result, more competitive results are induced, i.e., DRNet320-
ResNet101 delivers 33.5% AP and DRNet512-ResNet101
achieves 38.6% AP. If multi-scale testing is employed, we see
42.4% AP from DRNet512-ResNet101. Additionally, using
MobileNet [44] as the backbone, our DRNet outperforms
Faster RCNN, SSD, and RFBNet by a substantial margin.
DRNet and RFBNet are similar in VOC mAP and COCO
AP. Although similar performances are produced, DRNet and
RFBNet are designed based on different motivations. That is,
DRNet solves the problem of inaccurate anchors and feature
locations, while RFBNet enhances the receptive field of the
backbone. Two ideas are complementary so that anchor-offset
detection and RFB block can be employed simultaneously.
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TABLE IV
Results on COCO test-dev. “AP” IS EVALUATED AT IOU THRESHOLDS FROM 0.5 TO 0.95. “AP@0.5”: PASCAL-TYPE METRIC, IOU= 0.5.

“AP@0.75”: EVALUATED AT IOU= 0.75. APS , APM , APL : AP AT DIFFERENT SCALES. “+” INDICATES MULTI-SCALE TESTING. BOLD FONTS
INDICATE THAT WE DRAW READERS’ ATTENTION TO A DEEP COMPARISON.

Method Backbone Train data AP AP@0.5 AP@0.75 APS APM APL Time
anchor-free

ExtremeNet [31] Hourglass104 trainval35k 40.2 55.5 43.2 20.4 43.2 53.1 −
CornerNet [30] Hourglass104 trainval35k 40.6 56.4 43.2 19.1 42.8 54.3 −

FCOS [33] ResNet101 trainval35k 41.5 60.7 45.0 24.4 44.8 51.6 −
CenterNet [32] Hourglass104 trainval35k 42.1 61.1 45.9 24.1 45.5 52.8 −

anchor-based two-stage
Faster RCNN† [2] MobileNet trainval32k 19.8 − − − − − −
Faster RCNN [2] VGG16 train 24.2 45.3 23.5 7.7 26.4 37.1 147 ms
Faster RCNN [2] ResNet101 trainval 29.4 48.0 − 9.0 30.5 47.1 −

RFCN [3] ResNet101 trainval 29.9 51.9 − 10.8 32.8 45.0 110 ms
Deformable Faster RCNN [35] ResNet101 trainval 33.1 50.3 − 11.6 34.9 51.2 −

CoupleNet [21] ResNet101 trainval 34.4 54.8 37.2 13.4 38.1 50.8 −
Faster RCNN+++ [42] ResNet101-c4 trainval 34.9 55.7 37.4 15.6 38.7 50.9 3.36 s

Deformable RFCN [35] ResNet101 trainval 34.5 55.0 − 14.0 37.7 50.3 125 ms
Attention CoupleNet [22] ResNet101 trainval+S 35.4 55.7 37.6 13.2 38.6 52.5 −
Faster RCNN w/ FPN [23] ResNet101 trainval35k 36.2 59.1 39.0 18.2 39.0 48.2 240 ms

anchor-based single-stage
SSD300† [5] MobileNet trainval35k 19.3 − − − − − −

RFBNet300† [27] MobileNet trainval35k 20.7 − − − − − −
YOLOv2 [26] Darknet19 trainval35k 21.6 44.0 19.2 5.0 22.4 35.5 25 ms
SSD300 [5] VGG16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4 12 ms

DSSD321 [25] ResNet101 trainval35k 28.0 46.1 29.2 7.4 28.1 47.6 −
SSD512 [5] VGG16 trainval35k 28.8 48.5 30.3 10.9 31.8 43.5 28 ms

RefineDet320 [6] VGG16 trainval35k 29.4 49.2 31.3 10.0 32.0 44.4 −
RFBNet300 [27] VGG16 trainval35k 30.3 49.3 31.8 11.8 31.9 45.9 15 ms
RefineDet320 [6] ResNet101 trainval35k 32.0 51.4 34.2 10.5 34.7 50.4 −

SSD513 [25] ResNet101 trainval35k 31.2 50.4 33.3 10.2 34.5 49.8 −
YOLOv3-608 [29] DarkNet53 trainval35k 33.0 57.9 34.4 18.3 35.4 41.9 51 ms
RefineDet512 [6] VGG16 trainval35k 33.0 54.5 35.5 16.3 36.3 44.3 −

DSSD513 [25] ResNet101 trainval35k 33.2 53.3 35.2 13.0 35.4 51.1 182 ms
RetinaNet500 [24] ResNet101 trainval35k 34.4 53.1 36.8 14.7 38.5 49.1 90 ms
RFBNet512 [27] VGG16 trainval35k 34.4 55.7 36.4 17.6 37.0 47.6 33 ms
RefineDet512 [6] ResNet101 trainval35k 36.4 57.5 39.5 16.6 39.9 51.4 −

GA-RetinaNet [37] ResNet50 train 37.1 56.9 40.0 20.1 40.1 48.0 −
Cas-RetinaNet800 [36] ResNet101 trainval35k 41.1 60.7 45.0 23.7 44.4 52.9 −

DRNet320† MobileNet trainval35k 26.0/25.7 45.3 26.8 8.0 28.7 38.9 27 ms
DRNet512† MobileNet trainval35k 28.5/28.4 49.8 29.6 14.3 32.1 36.6 51 ms
DRNet320 VGG16 trainval35k 30.5 51.2 32.3 11.2 33.9 44.9 29 ms
DRNet512 VGG16 trainval35k 34.3 57.1 36.4 17.9 38.1 44.8 53 ms
DRNet320 RedNet101 trainval35k 33.5 53.4 35.9 11.5 37.4 50.6 36 ms
DRNet512 ResNet101 trainval35k 38.6 60.3 42.2 19.0 43.2 52.7 61 ms

DRNet320+ VGG16 trainval35k 35.4 57.8 37.7 19.7 38.5 45.7 −
DRNet512+ VGG16 trainval35k 37.9 61.6 40.3 22.6 40.4 48.4 −
DRNet320+ RedNet101 trainval35k 39.2 61.3 42.3 21.4 42.8 51.4 −
DRNet512+ ResNet101 trainval35k 42.4 65.5 46.1 25.7 45.3 55.0 −

†: Prior MobileNet-based models are tested on COCO minival2014, so our MobileNet-based AP is reported as “test-dev/minival2014”.

Error analysis of DRNet512 is conducted on COCO 2014
minival set (5, 000 images), and precision-recall curves are
shown on person, vehicle, furniture, and electronic classes.
From Fig. 8, it is seen that there exists room for improvement
of location precision. As for classification, DRNet has less
confusion with similar categories or others (Sim & Oth). Thus,
our approach is good at inter-class inference, benefiting from
accurate single-stage detection features generated by the fea-
ture location refinement. By contrast, the error caused by the
background (BG) is slightly serious. Probable improvement
proposals will be discussed in Section V-G.

E. Results on ImageNet VID

TRNet and TDRNet are evaluated on ImageNet VID dataset,
which requires algorithms to detect 30-class targets in con-
secutive frames. There are 4, 000 videos in the training set
(1, 181, 113 frames), and 555 videos in the validation set
(176, 126 frames). The initial learning rate is 0.001 for the
first 70 epochs, then we use a learning rate of 0.0001 for the
next 30 epochs and 0.00001 for another 30 epochs. For fast
inference speed, all models use 320× 320 input images.

1) Accuracy vs. Speed Trade-Off: SSD with 4-scale detec-
tion features serves as the baseline, called SSD4s, and RG and
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Fig. 9. Inference analysis of TRNet and TDRNet with detection period k
and soft coefficient e. Forward FPS does not consider the time consumption
caused by NMS. (a) TRNet-VGG16 (The baseline is 63.0%). (b) TDRNet-
VGG16 (The baseline is 63.0%). (c) TRNet and TDRNet with MobileNet
(The baseline is 58.3%). (d) TRNet with VGG16 and MobileNet.

RD are also contrasted with similar structure (see Fig 5(a)).
As a result, SSD4s-VGG16 and SSD4s-MobileNet obtain
63.0%, 58.3% in mAP, respectively. The key frame duration
is used for temporal detection, so accuracy vs. speed trade-
off based on k is first analyzed. As shown in Fig. 9(a), TRNet
significantly improves the mAP by 3.6% (i.e., 66.6% vs. 63.0).
As k increasing, the mAP decreases while the speed raises.
Note that NMS impacts detection speed to some extent, but
this part is out of the scope of this paper, so the FPS without
NMS is also reported (denoted as Forward FPS). As plotted
in Fig. 9(a), Forward FPS increases from 136.8 to 234.2 with
the rise of k, and the overall speed can reach 55.5 FPS.
Furthermore, TDRNet improves the performance up to 67.5%
benefiting from the proposed anchor-offset detection, which
outperforms the baseline by 4.5 points. When k = 8, TDRNet
can run at 55.1 FPS (Forward FPS reaches 215.4) while
maintaining the mAP of 66.6%. As for k = 1, 2, ..., 8, TRNet
has a 2.6-point drop in mAP (i.e., 66.6% vs. 64.0%), whereas
TDRNet only has a decrease of 0.9% mAP (i.e., 67.5% vs.
66.6%). Thus, the refinement information in TDRNet is more
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Fig. 10. The plot of mAP vs. inference time for approaches in this paper.
We achieve a wide variety of trade-offs between accuracy and speed through
different backbones and k settings.

robust in terms of temporal propagation owing to our proposed
anchor-offset detection. Additionally, using MobileNet as the
backbone, TRNet and TDRNet achieve 60.7% and 63.1%
mAP (k = 4), surpassing the baseline by 2.4 and 4.8 points,
respectively. Meanwhile, our MobileNet-based model can run
over 70 FPS (Noted that the speed of MobileNet in Pytorch
is slightly slower than the official implementation).

To overcome TRNet’s rapid mAP decrease with increasing
k, the soft refinement strategy is introduced to TRNet with a
soft coefficient e. Referring to Fig. 9(d), e = 0.5 can restrict
this mAP drop within 1% from k = 1 to k = 8, i.e., 66.6%
vs. 66.2% for VGG16 and 61.3% vs. 61.0% for MobileNet.

As shown in Fig. 10, with 320× 320 input size, this paper
presents a series of approaches for the trade-off between
accuracy and speed. The fast solution is TRNet-MobileNet
(k = 8), whose inference time is 14 ms. The most accurate
method in this paper is DRNet320 with 69.4% mAP and 25
ms in inference. In terms of TDRNet-VGG16 and DRNet320-
VGG16, it can be seen that DRNet is more accurate owing
to FPN and multi-deformable head, yet TDRNet has a better
trade-off between accuracy and speed.

2) Comparison with Other Architectures: TRNet and T-
DRNet are compared against several prior and contemporary
approaches in Table V. Existing video detectors are catego-
rized into offline methods (i.e., batch-frame mode) and online
methods. Most methods are based on a two-stage detector and
a deep backbone, so they usually have high mAP yet imprac-
tical execution time. As for offline approaches, this non-causal
batch-frame mode usually leverages both previous and future
information that prohibits it from real-world applications. In
addition, recent works usually borrow other temporal modules
(e.g., tracker, optical flow, and LSTM) to integrate multi-
frame information. Among single-stage methods, TDRNet-
VGG16 has a significant superiority in accuracy, i.e., 1.9%
and 12.9% higher mAP than TSSD [16] and LSTM-SSD [15],
respectively. When compared to MobileNet-based detectors,
TDRNet-MobileNet has the best results, i.e., it outperforms
LSTM-SSD by 8.7 points and surpasses HPVD-Mob [12] by
2.9 points. To the best of our knowledge, our designs have
the following merits: i) instead of borrowing other temporal
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TABLE V
Comparison of the proposed methods and several prior and

contemporary approaches on VID. k = 4 FOR TRNET AND TDRNET.

Method Components Performances
Backbone Flow Tracking RNN Real time mAP

static methods
SSD4s320 MobileNet X 58.3
SSD4s320 VGG16 X 63.0

Faster RCNN [2] GoogLeNet 63.0
SSD300 [5] VGG16 X 63.0

RefineDet320 [6] VGG16 X 66.7
DRNet320 VGG16 X 69.4

offline methods
STMN [14] VGG16 X 55.6
TPN [17] GoogLeNet X 68.4

FGFA [10] ResNet101 X 76.3
HPVD [11] ResNet101 X 78.6
STSN [13] ResNet101 78.7

online methods
LSTM-SSD [15] MobileNet X X 54.4
HPVD-Mob [12] MobileNet X X X 60.2

TCNN [8] DeepID+Craft X X 61.5
TSSD [16] VGG16 X X 65.4
D&T [9] ResNet101 X 78.7
TRNet MobileNet X 61.2

TDRNet MobileNet X 63.1
TRNet VGG16 X 66.5

TDRNet VGG16 X 67.3

modules, temporal information is exploited from the detector
itself. Thus, our design is a new online detection mode for
videos; ii) TDRNet achieves the highest mAP among real-
time online temporal detectors, and it induces a better trade-off
between accuracy and speed for real-world tasks.

F. Underwater Object Detection and Grasping

Underwater missions are quite intractable for humans, so
we use an autonomous system for these difficult tasks, i.e.,
underwater navigation and object grasping. Owing to the
characteristic of good accuracy vs. speed trade-off, TDRNet
is suited to real-world applications. In reality, we employ a
remote operated vehicle (ROV) for underwater grasping, where
a microcomputer with an Intel I5-6400 CPU, an NVIDIA
GTX 1060 GPU, and 8 GB RAM is deployed and a camera
is placed in the electric compartment for visual navigation.
Based on our proposed method, the ROV is able to approach
targets and grasp marine products (e.g., sea cucumbers, sea
urchins, bivalves, and starfish) using a manipulator. The test
venue is located in Zhangzidao, China, where the water depth
is approximately 10 m. It should be noted that the dataset is
from http://en.cnurpc.org. Based on this dataset, we compare
some prior approaches and DRNet. Referring to Table VI, the
proposed DRNet has advantages in accuracy for this difficult
real-world mission. Note that Table VI does not include TRNet
and TDRNet because this is a static dataset.

As shown in Fig. 11(a), the ROV works on a natural
seabed, and TDRNet is competent in detecting objects in
an unstructured undersea environment (see Fig. 11(b)). For
better visualization, we demonstrate the detection results of
sea cucumbers, sea urchins, and bivalves using yellow, cyan,

TABLE VI
Comparison of the proposed methods and contemporary approaches
for underwater object detection. ALL THESE METHODS USE VGG16

BACKBONE AND 512 INPUT SIZE

Method mAP Sea cucumber Sea urchin Bivalve Starfish
SSD [5] 72.9 70.2 87.1 50.8 83.5

RetinaNet [24] 74.0 69.8 88.1 54.7 83.4
RefineDet [6] 76.0 73.8 90.2 54.1 85.8

DRNet 77.1 75.6 91.1 55.1 86.7

Fig. 11. Schematic examples of an underwater detection/grasping task. TDR-
Net is trained for detecting seafood animals, i.e., sea cucumbers, sea urchins,
and bivalves, which are shown in yellow, cyan, red boxes, respectively. We
draw all detected boxes with > 0.4 score. The top line: The employed ROV
and working scenarios; The bottom line: Detection snapshots.

red boxes, respectively. This task is challenging for object
detection. On one hand, objects gather together and occlude
each other. For example, in the left-bottom of 7th demonstrated
frame, a bivalve is almost completely occluded by a sea urchin.
On the other hand, many small objects appear in the practical
scenario. Despite these difficulties, our proposed TDRNet
can deal with them efficiently and demonstrate a promising
robotic application. The experimental video is available at
https://youtu.be/XDSa4BQX9M8.

G. Discussion

1) Key Frame Scheduling: Zhu et al. developed an adaptive
key frame scheduling [11] for key frame selection, and we
employ a pre-fixed key frame duration. We argue that the
adaptive key frame scheduling is needless for both accuracy
and speed in this paper: i) any scheduling strategy cannot
generate an mAP that outmatches the result of k = 1.
Therefore, given that the speed of RG is fast enough (i.e., 270
FPS) and a scheduling strategy should deal with each frame,
it is better to set k = 1 than to use an adaptive key frame
scheduling. ii) the longest period is k = 8 in our experiments,
and we also state that longer detection period is needless:
Forward FPS of SSD4s-VGG16 is 270 and that of TRNet-
VGG16 reaches 234 (k = 8). Thus, longer key frame duration
has an ignorable contribution to inference speed since TRNet
and TDRNet cannot overpass SSD4s in Forward FPS.

2) Further Enhancement of Refinement Networks: In terms
of accuracy, it can be seen from Fig. 8 that there still exists
room for improvement of location precision and foreground-
background classification. We present two probable solutions:
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i) multi-step refinement could be beneficial; ii) because of the
hard negative mining, only a part of negative samples (i.e.,
background) are used for training. Therefore, using a focal
loss [24] to train a network with all negative samples could
be more effective. For example, Chi et al. used focal loss and
negative anchor filtering to train a refinement network and
achieved high performance on face detection [45].

Regarding inference speed, the NMS has an impact. There
could exist two solutions: i) decreasing the anchor amount
could be beneficial; ii) an end-to-end detector is becoming
urgently necessary. For example, Hu et al. developed a relation
network for both detection and duplicate removal, so the whole
network can perform in an end-to-end manner [46].

3) Challenging Object Detection in Real-World Scenes:
Real-world object detection is more challenging, but classical
datasets, e.g., VOC, COCO, and VID, could not contain vari-
ous real-world environments. Thus, it important to study object
detection in specific real-world scenes. To this end, many real-
world datasets are developed. For example, besides our studied
underwater dataset, TU-VDN dataset [47] introduces adverse
weather conditions to object detection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have taken aim at precisely detecting
objects in real time for static and temporal scenes. Firstly,
drawbacks of the single-stage detector are analyzed from the
strengths of two-stage methods. Thereby, including an anchor
refinement, a feature location refinement, and a deformable
detection head, a novel anchor-offset detection is proposed.
Besides two-step regression, the anchor-offset detection is also
able to capture accurate single-stage features for detection.
Correspondingly, a DRNet is proposed based on the anchor-
offset detection, where a multi-deformable head is also de-
signed for more contextual information. In the case of temporal
detection, we propagate the refinement information in the
anchor-offset detection across time and propose a TRNet and a
TDRNet with a reference generator and a refinement detector.
Our developed approaches have been evaluated on PASCAL
VOC, COCO, and ImageNet VID. As a result, our designs
induce a considerably enhanced detection accuracy and see
a substantial improvement on the trade-off between accuracy
and speed. Finally, the proposed algorithms are applied to
underwater object detection and grasping.

In the future, we plan to incorporate attention mechanism to
the anchor-offset detection and design more effective networks
for more robust feature learning.
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