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This study presents an intelligent soft robotic system capable of perceiving,
describing, and sorting objects based on their physical properties. This work
introduces a bimodal self-powered flexible sensor (BSFS) based on the
triboelectric nanogenerator and giant magnetoelastic effect. The BSFS
features a simplified structure comprising a magnetoelastic conductive film
and a packaged liquid metal coil. The BSFS can precisely detect and
distinguish touchless and tactile models, with a response time of 10 ms. By
seamlessly integrating the BSFSs into the soft fingers, this study realizes an
anthropomorphic soft robotic hand with remarkable multimodal perception
capabilities. The touchless signals provide valuable insights into object shape
and material composition, while the tactile signals offer precise information
regarding surface roughness. Utilizing a convolutional neural network (CNN),
this study integrates all sensing information, resulting in an intelligent soft
robotic system that accurately describes objects based on their physical
properties, including materials, surface roughness, and shapes, with an
accuracy rate of up to 97%. This study may lay a robotic foundation for the
hardware of the general artificial intelligence with capacities to interpret and
interact with the physical world, which also serves as an interface between
artificial intelligence and soft robots.
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1. Introduction

Soft robots possess inherent flexibility and
safety features and are promising for var-
ious practical applications.[1–6] Numerous
flexible sensors have been developed based
on piezoelectric,[7,8] piezoresistive,[9–12]

capacitive,[13–15] triboelectric,[16,17] and giant
magnetoelastic effects to endow the soft
robots with sensing abilities.[18,19] While
these sensors enable soft robots to per-
ceive specific types of information, their
single-mode character fails to satisfy the re-
quirements for comprehensive intelligent
behaviors of soft robots. In particular, soft
robots, such as soft robotic hands, neces-
sitate multimodal information perception
and description capabilities akin to human
hands (Figure 1).[20,21] To broaden the scope
of practical applications of soft robots,
developing high-performance multimodal
flexible sensors and intelligent soft robotic
systems integrating machine learning is
imperative.

Until now, many efforts have been made
to develop multimodal flexible sensors.

There are two main categories. The first category involves fab-
ricating sensors with single-functional materials.[22–31] For in-
stance, liquid metal can be encapsulated within a silicone rub-
ber channel to enable pressure and bending perception.[23] Flex-
ible capacitive sensors, comprising suitable materials, can detect
pressure and the distance to external objects.[24] However, chal-
lenges remain in separating and decoupling signals of each stim-
ulus type.

The second category focuses on diversifying the range of func-
tional materials and employing a single transition mechanism
for each material to achieve multimodal sensing.[32–41] For in-
stance, Liu et al. developed a flexible multimodal sensor us-
ing liquid metal and triboelectric nanogenerators to enable dis-
tance and pressure sensing.[41] Kim et al. fabricated a complex
multimodal sensor utilizing an ionic liquid, soft optical compo-
nents, and conductive fabric to perceive stretching, bending, and
compression.[36] Although these sensors successfully disentan-
gle combined multimodal information, they often have intricate
structural issues and are complex to fabricate. Furthermore, most
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Figure 1. The intelligent soft robotic system perceives, describes, and sorts objects by their physical properties.

existing flexible multimodal sensors exhibit slow response and
require external sources to power themselves.

Researchers have endeavored to develop intelligent soft robots
with flexible multimodal sensors to perceive diverse environ-
mental information and enable real-life applications.[42–46] For
instance, Zhao et al. embedded flexible optical fibers within a
soft robotic hand to detect strain and facilitate texture or shape
perception.[43] Hao et al. utilized liquid metal sensors attached
to the gripper’s surface to perceive object shapes.[45] With their
broad material selection and high output, triboelectric nanogen-
erators hold significant promise for integration with soft robotic
hands.[47–52] Jin et al. embedded triboelectric bending and tac-
tile sensors on a soft robotic hand’s top and bottom surfaces to
enable object identification through shape perception.[47] How-
ever, the current intelligent soft robotic hands lack comprehen-
sive multimodal information perception and description capabil-
ities. These limitations hinder the ability of soft robotic hands
to perceive multimodal environmental information and perform
delicate manipulation tasks.

In practical applications, the current main approaches for
robots to touchless perceive the external environment relies on
vision.[53–56] Nevertheless, the vision method faces challenges in
sensing and describing the objects’ material properties and sur-
face roughness. Therefore, integrating a soft robot capable of
multimodal sensing and then describing objects becomes a valu-
able complement to the current robot perception. Soft robots that
can describe objects’ physical characteristics with multiple physi-
cal factors would enhance the robots’ interaction and operational
abilities with the real world.

In this study, we propose an intelligent perception and recogni-
tion soft robotic system that addresses these challenges by incor-
porating a bimodal self-powered flexible sensor (BSFS). Leverag-
ing the principles of triboelectric nanogenerators and the giant

magnetoelastic effect, the BSFS demonstrates exceptional sen-
sitivity and clear discrimination between touchless and tactile
modes, with a response time of 10 ms. By seamlessly integrat-
ing the BSFSs into the soft fingers, we realize an anthropomor-
phic soft robotic hand with remarkable multimodal perception
capabilities. The touchless signals provide valuable insights into
object shape and material composition, while the tactile signals
offer precise information regarding surface roughness. Using a
convolutional neural network (CNN), we implemented an intel-
ligent soft robotic system to perceive, describe, and sort objects
based on their physical properties.

2. Results and Discussion

2.1. Working Principle and Sensing Performance of BSFS

As shown in Figure 2a, the BSFS comprises a magnetoelastic
conductive film and a packaged liquid metal coil. The fabrica-
tion process is shown in Figure S1 (Supporting Information).
We doped the micromagnets (Figure S2, Supporting Informa-
tion) and carbon nanotubes (Figure S3, Supporting Information)
into the silicone rubber material to implement the magnetoe-
lastic conductive film. Then we blend the film to induce the air
microbubbles, resulting in a porous structure on the film sur-
face. The cross-section of the magnetoelastic conductive film is
shown in Figure 2b. The porous structure can facilitate a reduc-
tion in mechanical modulus and an improvement in mechanical-
to-magnetic energy conversion. Subsequently, the magnetoelas-
tic conductive film is magnetized using a magnetizer (WD-80,
Yingpu), causing reorientation and movement of the micromag-
nets, finally forming a wavy magnetic chain. The liquid metal
layer has 22 turns of coils, which were printed and then encapsu-
lated with silicone rubber (Figure S4, Supporting Information).
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Figure 2. Structure and working mechanism of the proposed bimodal self-powered flexible sensor (BSFS). a) The BSFS consists of two functional, flexible
films, a magnetoelastic conductive film, and a liquid metal coil with package film. b) The scanning electron microscopy image of the magnetoelastic
conductive film’s cross-section. Scale bar: 200 μm. c) Photograph of the BSFS in a bending state. Scale bar: 5 mm. d) Hysteresis loop of the soft
magnetoelastic conductive film. Magnetic flux density mappings of the soft magnetoelastic film in the initial state e) and a compressed state f). g) The
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The flexibility and deformability of the overall structure of the
BSFS is shown in Figure 2c, because all components are made of
flexible materials.

Notably, the magnetoelastic conductive film exhibits notable
magnetoelasticity, characterized by a remnant magnetization of
up to 321.7 emu/g, as shown in Figure 2d. We established a ded-
icated platform to measure the magnetic flux density mappings
on the surface under different uniaxial stresses (0 and 256 kPa)
(Figure S5, Supporting Information). The results showed a sub-
stantial decrease in the magnetic flux density of a 3 × 3 × 0.3 cm
magnetoelastic conductive film, amounting to 16.9%, as depicted
in Figure 2e,f. Notably, our system’s relative magnetic flux density
decreases surpassed that of traditional magnetoelastic systems by
two orders of magnitude. We conducted an experiment to com-
pare the performances between porous and non-porous magne-
toelastic conductive films. In particular, we measured the surface
magnetic field intensity of both types of films before and after ap-
plying the same pressure and calculated the variation in surface
magnetic field intensity. As shown in Figure S6 (Supporting In-
formation), the porous magnetoelastic conductive film exhibited
a notably higher surface magnetic field variation than the non-
porous magnetoelastic conductive film. This experimental result
shows that a porous structure can enhance the performance of
the magnetoelastic conductive film in terms of mechanical-to-
magnetic energy conversion.

The comprehensive touchless and tactile perception principle
of the BSFS is illustrated in Figure 2g. During the initial stage
(i), the external object obtains negative charges based on the tri-
boelectrification effect after repeated contact. Due to the distance
from the external object, the magnetoelastic conductive film ac-
quires minimal positive charges. In stage (ii), as the external ob-
ject approaches the magnetoelastic conductive film, the electric
potential between the film and the ground changes based on the
electrostatic induction effect. This change drives free electrons
to flow from the magnetoelastic conductive film to the ground,
generating a circuit current. In stage (iii), the BSFS begins to
deform due to contact pressure from the external object acting
on the magnetoelastic conductive film. With the external object
approaching the magnetoelastic conductive film, more free elec-
trons flow to the ground, generating a current in the same direc-
tion. Simultaneously, the micromagnet chain structure changes
as the magnetoelastic conductive film deforms under contact
pressure, weakening the surface magnetic flux density. Based on
the principle of electromagnetic induction, the liquid metal coil
generates a current corresponding to the magnetic field variation.
In stage (iv), the distance is minimized when the external object
is in full contact with the BSFS, and the free electrons stop mov-
ing between the ground and the magnetoelastic conductive film.
As a result, no current is generated in the liquid metal coil as the
surface magnetic flux density reaches its minimum. In stage (v),

with the release of the external pressure, the free electrons flow
back from the ground to the magnetoelastic conductive film, gen-
erating a current in the opposite direction.

Similarly, a reverse current is induced in the liquid metal coil
as the micromagnet wavy chain structure recovers, causing the
magnetic flux density to return to its initial state. In stage (vi),
as the external object separates from the BSFS, the number of
electrons flowing back to the magnetoelastic conductive film in-
creases, generating a current in the same direction as the previ-
ous state. Finally, an electrical equilibrium is established when
the external object moves away from the BSFS. In addition, the
BSFS enables self-powered sensing by harnessing the principles
of the triboelectric nanogenerator and giant magnetoelastic ef-
fect.

We established a testing platform (Figure S7, Supporting In-
formation) to characterize the performance of the BSFS. The ex-
ternal object was attached to the end of a linear motor (E1100,
LinMot), while the BSFS was fixed on the top of a commer-
cial high-precision sensor (mini40, ATI Industrial Automation).
The touchless signal output ΔU and the tactile signal output ΔI
were measured by electrometers (Keithley 6514, Tektronix Inc.).
Figure 3a illustrates the BSFS output signals dependent on the
distance between the BSFS and external object. As the distance
increases, the output signal ΔU gradually decreases from 22.56
to 0 V, while the tactile signal ΔI stabilizes near 0. This observa-
tion indicates that the distance can modulate the touchless signal
output. However, it does not affect the tactile signal output, en-
abling the BSFS to decouple touchless and tactile sensing mod-
els. Figure 3b demonstrates the capability of BSFS to perceive
pressure. As the pressure acting on the BSFS increases from 2 to
30 kPa, the touchless output signal ΔU initially increases rapidly
and then gradually rises to a maximum value of 8.2 V. The tac-
tile signal increases linearly to 3.4 μA, facilitating the detection of
contact pressure by the BSFS.

Furthermore, different materials of the external objects pos-
sess distinct electron affinities, which can influence triboelec-
trification and electrostatic induction, subsequently altering the
touchless output signal of the BSFS. Based on the principle of
electromagnetic induction, the tactile sensing signal will not be
affected by the material properties. We measured signal outputs
under the same test conditions on seven different materials, as
shown in Figure 3c. The touchless signal differed among these
materials, while the tactile signal remained almost unchanged.

To assess the dynamic response of the BSFS, we performed
rapid approaching and pressing tests, as depicted in Figure 3d,e.
The touchless signal exhibits negligible dynamic response time
owing to the active sensing principle, and the dynamic response
time of the tactile signal is less than 10 ms. This rapid-dynamic
response capability empowers the BSFS to detect more com-
prehensive information and broadens its potential application

working mechanism of the BSFS: i) The external object (aqua) obtains negative charges after several contacts due to the triboelectrification effect. ii)
When an external object approaches the magnetoelastic conductive film (indicated by the golden layer), the electric potential changes between the film
and the ground due to the electrostatic induction effect. Free electrons flow from the magnetoelastic conductive film to the ground, driven by electric
potential. iii) The BSFS starts to deform by the external object’s contact that acts on the magnetoelastic conductive film, further enhancing free electrons
flowing from the magnetoelastic conductive film to the ground. Meanwhile, the liquid metal coil (gray) generates a current based on the principle of
electromagnetic induction. iv) The free electrons stop moving when the external object finishes the contact stage with the BSFS. v) When external
pressure is released, the free electrons flow back from the ground to the magnetoelastic conductive film. At the same time, a reverse current is generated
in the liquid metal coil. vi) As the external object leaves the surface of the BSFS, electrons flow back to the magnetoelastic conductive film.
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Figure 3. Tactile and touchless sensing performances of the proposed bimodal self-powered flexible sensor (BSFS) prototype. a) The distance between
external and BSFS determines the touchless (red) and tactile (blue) outputs. b) The touchless and tactile signals as a function of pressure acted on the
BSFS. c) The touchless and tactile output signals at surfaces of different materials. d) The output signals of the BSFS under fast contact stimulus. e) The
close-up of the area indicated with the dashed square is shown in panel d). f) Stability and durability of the BSFS under 1000 cyclic excitation periods.
Panel g), h) show an image and output signals when tennis drops onto the BSFS. The left light-emitting diode (LED) was programmed to turn on when
the tactile signal exceeded a threshold value; the right LED turned on when the touchless signal exceeded a threshold value. Scale bar: 1.5 cm. Error bars
represent standard deviation (SD), n = 5 independent replicates.

scenarios. Due to the small noise floor (Figure S8, Supporting
Information), BSFS exhibits exceptionally high SNR of 37.4 and
37.2 dB for touchless and tactile signals, respectively. Figure 3f
shows the output signals of the BSFS during continuous test-
ing for 1000 cycles under identical conditions, demonstrating
its excellent durability and stability. To demonstrate the high dy-
namic touchless and tactile sensing capabilities of the BSFS, we
connected it to a light-emitting diode (LED) control circuit. The
touchless signal controlled the lighting of the right LED, while the
tactile signal controlled the lighting of the left LED. We recorded
the entire process of a tennis ball falling onto the BSFS using a
high-speed camera (FASTCAM Mini UX100, Photron Ltd) and
measured the corresponding BSFS output signals, as depicted
in Figure 3g,h, and Movie S1 (Supporting Information). As the
tennis ball gradually approached the BSFS, the touchless signal
gradually decreased. The tactile signal suddenly increased when
the ball made contact with the BSFS. The touchless signal gradu-
ally increased while the ball bounced back, and the tactile signal
quickly returned to its initial value. The tennis ball hit the BSFS

six times in less than 1 s and eventually stopped. The results show
a high dynamic response of the BSFS.

2.2. Intelligent Soft Robotic System Capable of Describing and
Sorting Objects

Owing to the simple fabrication process and compatible struc-
ture, the BSFS can be easily integrated into soft robots. We com-
bined BSFSs with a metamorphic palm to create an anthropo-
morphic soft robotic hand, as illustrated in Figure 4a. This grip-
per mimics the dexterity of a human hand, enabling versatile
object perception and manipulation. Utilizing the BSFSs as bot-
tom surfaces, we constructed soft pneumatic fingers for the soft
robotic hand, as depicted in Figure 4b. The finger exhibits bend-
ing motion when compressed air is introduced into its interior
due to the corrugated upper surface and relatively high elastic
modulus of the bottom structure, as shown in Figure 4c.
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Figure 4. The soft robotic hand with bimodal self-powered flexible sensors (BSFSs) identifies the material and roughness of different objects. a) The
physical depiction of the soft robotic hand. Scale bar: 3.0 cm. b) A soft pneumatic finger structure diagram with the BSFS as the bottom surface.
c) Working principal diagram of the soft pneumatic finger. d) The sensing signals correspond to five materials (nylon, wood, ethylene vinyl acetate (EVA),
photosensitive resin, and polyethylene terephthalate (PET)). e) The confusion matrix for identifying different materials (total accuracy: 99%). f) The
photograph of the soft robotic hand perceiving the materials of different objects. g) The sensing signal waveforms correspond to six different roughness.
h) The confusion matrix for identifying roughness (total accuracy: 97%). i) The photograph of the soft robotic hand perceiving objects’ surface roughness.

We incorporated the soft robotic hand onto a robotic arm
(AUBO-i5, AUBO-ROBOTICS) to facilitate the material percep-
tion. The arm controlled the soft robotic hand to perform touch-
less scanning on the object, and the signal outputs from the BS-
FSs were collected. Figure 4d displays the BSFS output signals of
five different materials, each subjected to 20 tests. By training a
CNN model using the acquired data, we achieved a remarkable
detection accuracy of 99%, as shown in Figure 4e. The material
detection results are directly displayed on the screen, as depicted
in Figure 4f and Movie S2 (Supporting Information). We also con-
ducted experiments on the intelligent soft robotic system’s ability
to recognize irregular objects. We identified three common ob-
jects with irregular shapes using a touchless scanning method.

The output BSFS signals during the perception of these objects
are depicted in Figure S9a (Supporting Information). Each object
underwent 20 repeated experimental trials. The results demon-
strated that the intelligent soft robotic system achieved a high
recognition accuracy, as shown in Figure S9b (Supporting Infor-
mation). Moreover, the detection results of irregular objects were
displayed on the screen (Movie S3, Supporting Information). To
perceive the object’s surface roughness, we directed the index
finger of the soft robotic hand to slide along its surface, captur-
ing the corresponding BSFS output signals. Figure 4g illustrates
the BSFS output signals for six distinct roughness levels of the
objects (Figure S10, Supporting Information). We conducted 20
detections for each roughness level and employed the collected
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data to train the CNN model. The intelligent soft robotic system
demonstrated a high accuracy of 97% in perceiving the rough-
ness of objects, as depicted in Figure 4h. The roughness detection
results are directly presented on the screen, as shown in Figure 4i
and Movie S4 (Supporting Information). Therefore, the intelli-
gent soft robot system can perceive the objects’ surface proper-
ties.

When the soft robot interacts with the external objects, the BS-
FSs produce intricate sensing signals that capture multiple phys-
ical features of the objects. Machine learning has emerged as a
powerful approach for extracting and classifying feature informa-
tion from complex data. CNN shows excellent potential for mul-
timodal information processing among various machine learn-
ing algorithms by effectively addressing data format mismatches
and subsequent fusion challenges. Therefore, we integrated CNN
into our intelligent soft robotic system, as depicted in Figure 5a.
Initially, we collected comprehensive information on the materi-
als, shapes, and roughness of the objects involved in the interac-
tions. The collected signals underwent a series of preprocessing.
Subsequently, we constructed a CNN model that establishes a re-
lationship between the feature matrix and corresponding labels.
This model was iteratively optimized to enhance its performance.
As the volume of training data increased, the accuracy of the CNN
model’s recognition steadily improved. The model precisely per-
ceives and describes the feature information of the objects. More-
over, the soft robot morphs and grasps the objects based on the
recognition results of the multimodal sensors.

To facilitate our experiments, we prepared 27 objects which
exhibited variations in material (resin, nylon, acrylonitrile buta-
diene styrene copolymer (ABS)), shape (frame, cylinder, sphere),
and surface roughness (smooth, moderately rough, rough), as
shown in Figure 5b. For ease of reference and identification, each
object was assigned a number. Figure 5c illustrates the accuracy
of the intelligent soft robotic system in perceiving and describ-
ing the physical characteristics of the 27 objects. Trained by 270
raw data sets, the robotic system achieved an identification accu-
racy of 97%. Furthermore, we demonstrated the remarkable ca-
pabilities of the intelligent soft robotic system in perceiving, de-
scribing, and sorting objects based on their physical properties,
as depicted in Figure 5d and Movie S5 (Supporting Information).

Specifically, the soft robotic system works by the following
steps: i) The soft robotic hand performs a touchless sweep over
the object to acquire the BSFSs output signals. ii) Inputting the
signals into the CNN model, the intelligent soft robotic system
first perceives and describes the object’s shape. iii) Subsequently,
the system further perceives and describes the object’s mate-
rial. Concurrently, the soft finger glides along the object’s sur-
face to perceive its roughness. iv) The system further describes
the roughness of the object. Furthermore, we explored the impact
of the soft robotic hand’s detection speed on the system’s detec-
tion accuracy. We conducted slow, moderate, and fast detection
with 20 repetitions for each speed. The results in Table S1 and
Movie S6 (Supporting Information) indicate that the system can
maintain a relatively high recognition accuracy even though the
soft robotic hand detection speed varies. v) Upon the user’s in-
quiry regarding the roughness value, the intelligent soft robotic
system responds. vi) After the comprehensive perception and de-
scription of the object’s multimodal characteristics, the system
prompts the user to indicate the sorting instruction, allowing

them to choose based on their preference. vii) According to the
shape of the identified object, the system commands the meta-
morphic palm to assume a specific posture, allowing the soft
robotic hand to conform to the object’s profile and achieve a stable
grasp. These postures have been predefined by researchers based
on their expertise. To sort and pick up the frame, the metamor-
phic palm keeps its original posture, and the fingers are actuated
by air pressure (P = 42 kPa). Then the soft robotic hand lifted the
frame with the thumb and the index finger. To sort and pick up
the cylinder and sphere, the servo controlling the thenar joint ro-
tates inward 60° and 105°, respectively. Then, the servo control-
ling the metacarpophalangeal joint rotates inward 50° and 60°,
respectively. Finally, the fingers were actuated by an air pressure
of 50 kPa to catch the object with all four fingers. viii) Ultimately,
the system successfully guides the soft robotic hand to deposit the
object into the designated box. In conclusion, our intelligent soft
robotic system can succinctly describe an object’s characteristics,
including its shape, material, and roughness, through a single
sentence displayed on the screen and transmitted via the loud-
speaker. Moreover, our interactive interface facilitates a seam-
less exchange of inquiries and responses between the user and
the intelligent system. For instance, the system can answer user
queries regarding the object’s properties and effectively sort the
object into a specific box per the user’s requirement.

3. Conclusion

In this study, we presented an intelligent soft robotic system ca-
pable of sensing and describing objects. To achieve this, we de-
signed and implemented the BSFS based on the principles of
triboelectric nanogenerator and the giant magnetoelastic effect.
The BSFS demonstrated excellent sensitivity in detecting and dis-
tinguishing touchless and tactile models, with an impressive re-
sponse time of only 10 ms. Its simple structure, comprising a
magnetoelastic conductive film and a packaged liquid metal coil,
made it an integral part of our intelligent soft robotic system. By
scanning and sliding on the objects, the gripper system was able
to integrate relevant information about their shapes, materials,
and roughness. We employed a CNN model to process and inter-
pret the collected sensing information. Through extensive train-
ing, the intelligent soft robotic system achieved a remarkable ac-
curacy rate of 97% in perceiving and describing multimodal in-
formation.

Despite our proposed design offering several advantages, there
are several limitations of the current system that require further
efforts. Firstly, the BSFS is limited in its touchless sensing perfor-
mance, which may be affected by rapid changes in external envi-
ronmental temperature or humidity. The modality of perception
in the intelligent soft robotic system can be further expanded. In-
corporating temperature sensing capabilities could be a promis-
ing avenue for future research. Additionally, increasing the num-
ber of BSFSs in the system would enable the detection of addi-
tional information, such as grasp position and pressure distribu-
tion. Furthermore, our machine learning model requires further
refinement to analyze and process complex multimodal informa-
tion, aiming to improve feature recognition accuracy. The limita-
tion of the current soft robotic system can be attributed to the al-
gorithms’ inability to describe unfamiliar objects. The system can
only perform multimodal perception and description of objects it
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Figure 5. The intelligent soft robotic system describes objects’ physical properties (material, shape, and roughness) in a language manner. a) The flow
diagram of the intelligent soft robotic hand for perceiving, describing, and sorting objects based on their physical properties. b) Photographs of 27
objects with different materials, shapes, and roughness. Scale bar: 5.0 cm. c) Confusion matrix of the system’s recognition results with 540 data groups,
with a total accuracy of 97%. d) Snapshots of the intelligent soft robotic system’s work process. The intelligent soft robotic system demonstrates the
capability to perceive and describe various characteristics of objects succinctly, presenting the information in a single sentence displayed on the screen
and transmitted via the loudspeaker. Leveraging the interactive interface, the intelligent system can effectively respond to user inquiries and accurately
sort the object into a specific box as requested, utilizing the keyboard input.

Adv. Funct. Mater. 2023, 2306368 © 2023 Wiley-VCH GmbH2306368 (8 of 10)
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has been trained on; however, it cannot describe objects outside
the training sets. In the future, we intend to further explore in-
telligent algorithms thus to enhance its level of intelligence. We
can enhance the generalization capability of perception systems,
enabling them to recognize objects outside the training set, thus
expanding the application range of intelligent robotic systems.
In terms of the gripper’s strength, more efforts should be made
to enhance its dexterity and load capacity. By addressing these
issues, we can further elevate the interaction of soft robots, em-
powering them to describe complex objects, meanwhile execut-
ing precise manipulation tasks. This work may pave the way for
intelligent soft robotic systems with capacities to interpret and
interact with the physical world.

4. Experimental Section
Fabrication of the Magnetoelastic Conductive Film: The magnetoelas-

tic conductive film was prepared following the procedure depicted in
Figure S1 (Supporting Information). Carbon nanotubes, comprising 0.5%
of the total mass, and neodymium-iron-boron micromagnets, accounting
for 75% of the total mass, were thoroughly combined in a beaker. Sub-
sequently, Ecoflex 00-30-part A and part B were added to the mixture,
which was then vigorously blended using a glass rod for a duration of 10
min. This blending process was crucial for introducing air microbubbles,
thereby creating a porous structure within the film. Next, the resulting mix-
ture was carefully poured into a 3D-printed mold, ensuring uniform dis-
tribution. The mold containing the mixture was then placed in a heating
oven and maintained at a temperature of 80 °C for a period of 4 h to facil-
itate curing. Once the film had solidified, it underwent magnetization us-
ing a magnetizer (WD-80, Yingpu) with a pulsed magnetic field strength of
2.3 T. This magnetization process aimed to induce remnant magnetization
within the film, enhancing its magnetic properties.

Characterization of the Magnetoelastic Conductive Film: The cross-
sectional structure of the magnetoelastic conductive film was examined
using a scanning electron microscope (SU8000, Hitachi) to obtain detailed
observations. The hysteresis characteristics of the magnetoelastic con-
ductive film were measured by a SQUID magnetometer (BKT-4500, Shin-
cotest) to analyze its magnetic properties. Furthermore, the strength of the
surface magnetic field was assessed using a magnetic probe. The mag-
netic flux density mappings were measured by a Gauss meter (TD8620,
Tunkai) with an axial probe.

Fabrication of the Flexible Liquid Metal Coil Film: Figure S4 (Supporting
Information) illustrates the fabrication process of the coil patterns on the
substrate. Initially, two coil patterns, forward and reverse, were printed on
the substrate using an inkjet printer. Each coil had a side length of 30 mm
and a line width of 0.5 mm. Subsequently, liquid metal (Smart800, DREAM
Ink) was applied to the printed patterns, followed by a coating of 0.5 mm
thick silicone rubber (Ecoflex-00-30). The substrate with the liquid metal
and cured silicone rubber was then placed in a refrigerator for 40 min at
−140 °C. Afterward, the substrate was carefully removed, resulting in the
transfer of the liquid metal coils onto the silicone rubber. The flexible film
was divided into two pieces, with one piece coated with a thin layer of
silicone rubber, while the other piece served as the cover. The upper and
lower liquid metal coils were interconnected through a vertical channel
located at the center. Finally, a layer of silicone rubber with a thickness of
approximately 1.5 mm was applied to encapsulate the upper liquid metal
coil, effectively packaging the flexible liquid metal coil structure.

Fabrication of the BSFS: The fabrication process of the BSFS involves
applying a magnetoelastic conductive film onto a liquid metal coil using a
thin layer of silicone adhesive.

Characterization of the BSFS: The touchless signal output ΔU and the
tactile signal outputΔI were measured using electrometers (Keithley 6514,
Tektronix Inc.).

Fabrication of the Soft Robotic Hand: The magnetoelastic conductive
film was used to create the bottom surface shape of the soft pneumatic

finger using a 3D-printed mold. It was then attached to a liquid metal coil
with a thin layer of silicone adhesive (Sil-Poxy, Smooth-on). The upper sur-
face was fabricated by coating silicone rubber (Mold Star 30, Smooth-on)
on a 3D-printed mold with a corrugated structure, and curing it at room
temperature for 6 h. The upper surface was attached to the bottom sur-
face with a thin layer of silicone rubber and cured for 4 h at room tempera-
ture. As shown in Figure S11 (Supporting Information), the metamorphic
palm comprimized a 3D-printed spherical five-linked rod part and two ser-
vos. The two servos drove the rotation of the five-linked rod, allowing the
palm to change its posture and achieve a human-like function. The soft
pneumatic gripper was assembled by integrating the soft fingers into the
metamorphic palm.

CNN Model Working Principle: This work applied a series of prepro-
cessing steps for the multimodal signal feedback, including normalization
and filtering for touchless signals and cropping for tactile signals. In the
material recognition model’s preprocess, the raw touchless data were fil-
tered by a low-pass Butterworth filter ( fc = 0.2Hz, N = 2). In the shape
recognition model’s preprocess, the raw touchless data were first filtered
by a low-pass Butterworth filter ( fc = 25Hz, N = 2) and then normalized
to 0 to 1. In the roughness recognition model’s preprocess, the raw tactile
data were cropped into 300-frame-long samples randomly in their valuable
ranges.

The CNN algorithm could extract specific features in different signal
segments by convolutional kernels and achieve the overall signal classifi-
cation through the features’ recognition. CNN could solve the problems
of the inefficiency of multiparameter and overfitting. The number of lay-
ers and channels of convolutional layers were adjusted in the models to
learn different signal features. Each model was trained with 60 datasets to
converge stably and achieved high accuracy in online tests for each item.

Statistical Analysis: At least five independent experiments were per-
formed, unless otherwise stated. The results were expressed as the mean
± standard deviation (SD) of each set of quintuplicate samples. Statistical
analysis was performed using Origin 2023 software.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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